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THE ONE-QUARTER THEOREM FOR MEAN UNIVALENT FUNCTIONS

by

ZI P. R. Garabedian and II. L. Royden

1. E=Iatn au _AUrx f .heDrmab.

Many attempts have been made to generalize the fundamental distortion

theorems of the theory of schlicht functions to the case of p -valued functions.

The derivation of sharp bounds for p -valent functions turns out to be none

too easy. Many of the estimates which have been found, however, are valid

for wider classes of functions satisfying only a condition of mean p -valence.

In particular, Spencer [51 has studied the class of mapping functions

W - :f(z. -4z ap+izl+op 2 P+2 +

regular in the unit circle lzI< 1, which transform the unit circle into a

Rieann surface R over the w -plane such that, for each r 70, the area of

2the sheets of R covering the circle IwI< r does not exceed pTrr . We shall

call such functions mean p -valent, and the term MeA unit shall indicate

the special case pal. We shall restrict our discussion to this latter case,

since each p -valent function f(z) can be replaced by the corresponding mean

univalent function f( z ) I /P . Writing w- ene in polar form, we can express

the condition that f(z) be mean univalent by requiringI r
(2)jf dcp- 2TT}dp 4O

for every r > 0, where it is understood that we integrate with respect to cP

over all sheets of the Riemann surface R which project onto the circle IwN-j.

II ,Spencer [51 has shown thnt within the class of mean univalent functions,

the second power series coefficient a2 satisfies the sharp inequality

$12
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(3) la2I1 2 ,

Spencer £5) also shows that if d is any value which f(s) does not assume

in the unit circle, then Idl : 1/7, and he conjectures that the sharp estimate

(4dl ,l/

is valid. The object of this note is to prove his conjecture.

To be precise, we consider analytic functions w-f(z) of the form (i)

in the unit circle, with p- 1, which map the unit circle onto a Riemann surface

R over the w -plane satisfying the condition

(5) d 21-- 2 dfi 0

o f t h e 4 ) thscasPhc esalcl
for each r " 0, where the integration with respect to 1 is extended over all

:sheets of R covering the circle Jvwl- For this class, which we shall call

the class of ky m J M iJg functions, we show that any omitted value

d satisfies the sharp inequality (4). Spencer's conjecture follows from this

result, since (5) is less restrictive than (2). Condition (5) is an estimate

of the area over certain half-planes of the Riemann surface D upon which

t- log f(z) maps the unit circle. We state the result in the form of a

a f(z) d f= I z I - ±,hen I d I > 1/4. The akr conalu i c4N
V: f a (z) a .2A Ua LYet o

The first part of our proof of (4) is based on the work of Hayman [3],

who has given elegant sharp estimates for the distortion of p -valent mappings

by using the concept of circular symmetrization due to Polya [41. The later

P,. part of the proof depends on polygonal Hadamard variations £21 and closes with

an inequality borrowed from the theory of free streamline flows.
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II

The harmonic function

g (6)I Z

-- log lwl+r O(lwl)

is the Greents function of the Riemann surface R with pole at the origin. We

call the constant the capacity of R at the origin. The normalization (1)

of the mapping w- f(z) is equivalent to the condition

(7) d - o

on the capacity constant. Since for any real 9 the function e igf(zeiQ) is

weakly mean univalent whenever f(z) is, there can be no loss of generality

in the assumption that the omitted value d of f(z) with smallest modulus jdj

is positive. The Riemann surface R does not cover the point d in the w -plane.

Our problem is to choose R so that for LY satisfying (7) the number d is a

minimum. It is easier to discuss this problem in an equivalent formulation

in which we fix d and maximize

We slit the Riemann surface R along the positive real axis between 0 and d,

and on the slit surface we consider the fixed branch of the function

(8) -arg w

which has values between 0 and 27T near the origin. We denote by i* the

Riemann surface obtained from R by identifying all points outside the circle

jwj < d which lie over the same point in the w -plane and have equal values
.

for q . The Riemann surface R may be multiply-connected, but R can %)e

imbedded in it. Hence by Lindelof's principle the capacity constant for

R at the origin is not smaller than . At the same time, R does not

cover d. Furthermore, R has no branch-points and satisfies condition (5)



when R does, since it is obtained from R by identifications.
.

We perform a process of circular symmetrization upon R which is defined
*

as follows. For each r od, we replace the arcs of R which cover the circle

Iwt -r by a single open are of the same circle with the same total length,

situated in such a way that it is bisected by the negative real axis. We

call the circularly symmetrized Riemann surface so obtained R*, and we note

that it is again simply-connected and without branch-points. The capacity

constant of R at the origin is not smaller than t*, as can be seen

from the work of Pllya [4]. The proof of the inequality * depends

merely upon expressing the capacity constant as a Dirichlet integral in

terms of the Green's function, symmetrizing the Green's function in an

avident manner, and estimating the Dirichlet integral of the symmetrized

function by means of Dirichlet's principle. Finally, d is not covered by

and (5) is satisfied by R*, since the same is true of *

The Riemann surface R* is simply-connected and does not cover d, and

furthermore,

K (9) ~

with equality holding only when R .-Ro Hence the Riemann surface for which

d > 0 is given and ' is a maximum will be found among those which are invariant

under circular symmetrization. Therefore we consider in the competition only

such Riemann surfaces. That such an extremal surface exists is a consequence

of the theorem that the class of weakly mean univalent functions forms a

normal family.

A remark which will be important in the following is that, if the image D

of R in the plane of the complex variable t- log w has a rectilinear poly-

gonal boundary with at most a given number of vertices, and if R is circularly



symmetric, then the above processes of identif1.t.tion and circular symmetriza-

tion may alter D, but they take its polygonal oouadary into another polygonal

boundary with no more vertices than before.

Nh3. •

We wish to apply variational methods to the extrema' p3eoblem posed in

the previous section of maximizing the capacity 6 of R for fixed d-- 0. For

this purpose we introduce a subclass fln of the weakly mean univalent functions
nom

characterized by certain restrictions on the Riemann surface D in the t -plane.
The functions f of class ( nm map the unit circle I z I < 1 onto Riemann surfaces

R over the w -plane which do not cover the point d and which are circularly

symmetric in the sense that f(z) is negative for negative values of z. The

corresponding Riemann surfaces D in the logarithmic t -plane are assumed to

be bounded by polygonal curves C'with at most n vertices. Because of the

multiple-valued nature of the mapping t- log w of R onto D, there are infinitely

many congruent polygons C bounding D, but we fix our attention on that particular

one which is symmetric in the real axis and passes through the real point

- log d. We denote by C+ and C" the two symmetric branches of this polygon

eminating from S. We impose the final condition on the class n m that the
O+

curve C should rise from 3 before falling and should cross the real axis

at most m times, and that between two consecutive crossings tk and tk+1 it

should lie in the strip

(10) tk <- Re !tk+l

+

However, C will be allowed to touch the real axis more than m times.

The class 2n.m is compact, and hence there is a function in a n,m which,

for a given d > 0, maximizes d. We call the corresponding extremal Riemann

surfaces in the w -plane and t -plane R and D, respectively. Let now



P(t)- G+ iH be an analytic function whose real part G is the Green's function

of R with a logarithmic singularity at the origin. Hadamard's variational

formula Ci shows that a shift of C by an amount FN along the inner normal

of C which is congruent on all components of the boundary of D and which is

symmetric on and C yields a shift
C"(ll) A ! p,(t)12 dt

of the capacity constant '. This variational formula is easily derived for

the present case of rectilinear boundary curves. From'the extremal property

of D, we find that when N represents a translation and rotation of each

segment of 0 which preserves the conditions (5) and (10), then S 0.

Because of the circular symmetrization procedure of Section 2, we see

that the extremal polygon C+ in the logarithmic t -plane has the property

that every vertical line intersects it in at most one segment or point. Let

A denote the edges of C+, ordered as we proceed from left to right with

increasing Re jtJ. Our objective is to prove (4) by showing that C+ actually

reduces to one infinite segment of the real axis, but we start by assuming

that this is not the case.

Suppose that is a segment of C+ lying above the real axis and that 4
is a later segment of C+ lying below the real axis; suppose that neither of

these segments lies on a vertical line tbrough a point where C+ crosses the
real axisl and suppose that I and are separated by only one point

/4 tk
where 0+ crosses the real axis. Then we can translate I and by small

amounts without altering (5) and (10). Such translations correspond to a

normal shift N which is constant on -# and on . Thus the extremal property

-A of D gives by (11)
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(12) J 12 N dt 1 0

whenever the area condition (5) remains unchanged, i.e., when the restriction

(13) Nldtl - o

is fulfilled. Since (13) implies (12), we deduce that there exists a Lagrange

multiplier k such that

(14) J P'12 Idtl- J Idtl

when is any segment of C' in the strip t < Re {tl < t which does

not coincide with the real axis or the vertical line through tk.

If two or more crossing points tk separate 1P and , then the constant

normal displacement N on the first segment must be positive in order to

satisfy (5). Thus (14) cannot be obtained in this case, but we do find that

(15) k ?!rk+1

As n--*oD, the extremal functions of class n approach an extremaln,m

function which we shall term of class m- In the limiting case, the extremal

Riemann surface D need not be bounded by polygons, and, indeed, we can prove
+

that C contains no rectilinear segment bordered by interior points of D and

distinct from the real axis and the lines Re ut -t k . For if there were such

a segment on the boundary of D, we could apply (11) with an arbitrary normal

displacement N and show that (13) implies (12). This would show, in turn,

that P'(t)2 is constant on that segment and hence constant throughout the

t -plane, a manifest contradiction.

It follows from the symmetrized form of D and these remarks that as n-->o,

an edge of C+ either shrinks to a point, or approaches the real axis, or tends

toward a vertical position. We shall prove thnt, away from the vertical lines
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through the crossing points tk, no segment of C approaches a vertical segment.

Suppose, indeed, that a segment .4 of C approached a vertical segment

in the interior of the strip (1O) as n--co, nnd suppose, without loss of

generality, that D bordered I. on the right. Then the upper end-point of 4

tends to the upper end-point of A, and some point T of C+ to the right of Lt

must also approach the upper end-point of .2. For if this were not the case,

then the upper end of £ would be bordered by the Riemann surface D in the

limiting case, and this would leave us in the previous contradictory situation.

Let w be the function which is 0 on 40 0 on the vertical ray descending

from 41 0 on the vertical ray descending from T, and 1 on the segment joining T

to the upper end-point of 4y, and which is harmonic in the narrow region

bounded by these lines. By the maximum principle, there is a positive constant

M such that in that region G'eMw, and hence A'(t)I2 M2?() 2 on ).

It follows that P'(t)-O uniformly on 4 a fixed distance below the upper

end-point of 4, since (Vw)2--0 uniformly there.

Let s be arc length along 4, measured from its center. Then infinitesimal

rotation of _IV about its center shows by (11), with N-s, that

(16) IF,' 12 sds - 0

whereas (14) implies

(17) i J iPI2 ds >0

as n P. Thus the center of gravity of the mass distribution with density IP'12

on 1 is located at the center of Ly, and the total mass remains above a

certain positive bound. This contradicts the previous statement that P"(t)-:0

uniformly a fixed distance below the upper end-point of , and we conclude

that 4 could not actually approach a vertical segment A
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We introduce for each n and m the analytic function

(18) F(t) - - p(t)2dt

and we note that it maps any segment of the polygon C+ onto another segment

whose angle of inclination with the real axis is precisely the negative of the

angle of inclination of the original segment. This follows from th e fact that

arg (P'(t))2 dt - arg (-dt) on a segment of C+  Now (14) shows that the

length of A and the length of its image by F are in the ratio A.* Thus

F maps any arc 0 of C which lies in a suitable strip tk+ Re{t:.3 t

or tk-l 1  Re{tJ - tk-  with q > 0, onto its reflection, stret-ched by

the factor A Since A has the same property, we find that on C
k' J k

(19) lm () e

where the number Fn is the length of the longest projection on the imaginary

axis of a segment AV of 'k' and hence approaches zero as n->o. 1he estimate

(19) is even valid along segments of lying on the real axis, sinae these

generate an error involving only the real parts of F and t in the ab ove

discussion.

We can now use the estimate (19) in the passage to the limit as n-->Do.

Using the Poisson integral representation of the harmonic function I1MfF(t)+>\kt

in the z -plane, we verify that for the Riemann surface D corresponding to a

limiting weakly mean univalent function f of class flm we have

(20) 1. (F(t) + Akt3. - 0

on boundary arcs 0k of C between points where C+ crosses the real ars. Thus

F+ At can be reflectsd across the oorresponding arc of the unit circle in

the z -plane and is analytic on that arc as a function of z. Differerntiation

with respect to z shows that



z" z(dt/dz )2J dz 1~k dw 2/dz2  vd
is an analytic function of z on this arc, and hence C consists of a finite

k

number of analytic curves Joined togetiler by singularities of known type.

Thus far we have shown that extremal functions of class .Q generate
m

extremal curves 0 which are piece-wise analytic in the interiors of the

strips (10) and satisfy (20) there. It is still conceivable, however, that

C contains vertical segments through the crossing points tk . In order to

discuss the nature of the singularities of C at the end-points of such

vertical portions, we notice that because the lengths of the sloping segments

of approximating polygons of class C tend to zero as n - o, the variational
n,m

identity (14) and the fact that F(t) and t are imaginary on the verticaltyt

segment imply

(22) (t)- t. 0

on 0 in the neighborhood of one of these end-points. By (22), we can reflect

Re{F- Xktj across a corresponding arc of the unit circle in the z -plane

and prove that C+ has a singularity such that its tangent turns continuously.

Next we can show that no vertical segments of this type occur. For

near a point of- a vertical segment through tk we can make a variation of C

by adding to or subtracting from D an infinitesimal, narrow rectangle. This

may take us out of the class of admissible curves 0, but if we then perform

a circular symmetrization of the corresponding varied Riemann surface R in

the w -plane, we do not decrease ', and we do obtain an admissible C

Indeed, the new curve is montonoically ascending near tk, since the old one

had a continuously tu'ning tangent, and hence it crosses the real axis at most

once near tk' Our rectangular variation is therefore permissible, and we can
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use it, with the formula (11), to prove that IP'(t)I2 is constant on the

segment through tk' But it follows that P'(t) is then constant throughout D,

and this contrudiction implies that no vertical segment through tk could have

existed in the first place.

We conclude that (20) and (22) hold at all points of C+ distinct from the

real axis. Hence at such points of C+

\il(23) F~t)-
Xk

whence
1/2-

S(24) P'(t) - / t

+ +
by (18), where t is the unit tangent vector for C+ . Thus 0 consists, in the

limitingr case of weakly mean univalent functions of class of a finite

number of analytic arcs, some of which satisfy the free boundary condition (24),

and the rest of which coincide with the real axis. The tangent of C+ turns

continuously and ends in a horizontal position at the point & -log d. The

last statement is proved by making a variation which consists in slitting R

a short distance in from a toward the origin and then magnifying by a suitable

factor. Unless C has a horizontal tangent at S, this variation increases

Finally, it is easy to see from (24) that sufficiently far to the right from

the imaginary axis, C reduces to an infinite ray of the real axis.

S4. Estae of the nIMhe of free bo-undrles.

In an effort to prove the inequality (4), we hive applied variational

analysis to the problem of maximizing the capacity I for a fixed positive

value of the omitted value d, in the class We have shown that the curve

C generated by the solution of this extremal problem consists of a finite

number of analytic arcs satisfying the free boundary condition (24) and a
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finite number of intervals of the real axis. We proceed to prove that actually

no free boundary curves (24) occur at all, by making a suitable application of

the argument principle. The idea of the proof is borrowed from the theory of

free streamline flows, and is suggested by an interpretation of (24) as a

condition for constant pressure.

We denote by D' the subregion of D bounded by C by the interval t' -,

and by the horizontal line

(25) Im~tj -17

The analytic function P(t) is regular in D" and has singularities on the

boundary at the point at infinity, both to the right and to the left, at the

point S, and at the end-points of each free arc of C+ satisfying (24). We

exclude these singularities by small circles, or by segments, in the case of

the point at infinity, and we calculate around the boundary of D the integral

(26) ~arg P" 0

We must also exclude by small circles any possible zeros of PU.

The point at infinity to the left contributes not more than -TI to

arg P , since P" behaves there like a power of et. The point at infinity

to the right contributes -rT/2, since P behaves like e-t/2 there. The point

contributes 37r/2, since P" has the behavior (t- 8)-3/2 there. The lines

(25), t< 5 and segments of the real axis to the right contribute a non-positive

quantity to Aarg P", since P' is regular and either real or pure imaginary

there. Each point of separation V of a free arc of C+ satisfying (24)

contributes not more than 1T/2 because P" behaves like (t-c1 q there

with q rO. On the other hand, PY vinishes at a point of inflection of C

which therefore contributes not more than -rr. By Rolle's th3orem and the
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+ +
continuity of the tangent of , each free arc of C must have at least two

points of inflection. Also, the remainder of such an arc contributes nothing

to A arg Pa", since by (24)

(27) Ki.., k

there, where K is the curvature. Hence the total contribution of each free

arc of + does not exceed

We conclude that if k is the number of free arcs of C+ satisfying (24),

then

(28) - IT - r/2 + 3r/2 - Tr A ar g P -o

It follows from this inequality that L - 0, which proves that C+ contains

no free arcs and must reduce to the interval t .

An extremal function f which maximizes d for given 6 without restrictions

other than (5) can be approximated arbitrarily by functions of class n m

Among these functions, the largest value of 6 is given by that function fo

which maps IzI< 1 on the entire plane slit along the positive real axis from d

to + o, and hence fo must possess the largest value of 6 among all weakly mean

tuivalent functions. If we take d- 1/4, we check immediately that fo is the

Koebe function co

(29) f°(z) - " kzk

for which V- 0. The inequality (4) for weakly mean univalent functions, and

therefore also for mean univalent functions in the sense of Spencer, is a

direct consequence of this conclusion.

The reader will see for himself that our method leads to many further

interesting results for the class of mean univalent functions.
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